Design of Stream-Road Crossings for Aquatic Organism Passage in Vermont

Kozmo Bates
Kozmo@AquaKoz.com

Culvert Design for Fish Passage

- Retrofit
- Replacement
- Removal
- New

- Roughness
- Adjust profile
- Fishway Baffles
- Roughened channel
- Regrade
- Grade controls
- Natural Bed

Passage Design Process

Pre-Design
- Project Objective
 - Assessment, Suitability
 - Design project long profile and alignment
 - Select design method

Design: Stream Simulation, Low slope, Hydraulic, or other

FINAL DESIGN
Or other option

Project Objectives - What is Success?

- Passage for target species
- Ecological connectivity
- Minimize delay of target species
- Passage for all aquatic organisms
- Low cost
- Block introduced species
- Public safety
- Public education
- Habitat restoration
- Durability
- Habitats restored
- Wildlife passage
- Protected from floods, debris, sediment

Design method determined by project objectives

Project objectives
- Habitat protection, restoration
- River and stream continuity
- Passage of fish
- Passage of other aquatic organisms
- Wildlife passage
- Traffic, road, safety, other
- Funding limits and requirements
- Regulatory

Design methods
- Hydraulic
- Stream Simulation
- Low slope (active channel, No slope)
- Alternative designs

Passage Design Process

Pre-Design
- Project Objective
 - Assessment, Suitability
 - Design project long profile and alignment
 - Select design method

Design: Stream Simulation, Low slope, Hydraulic, or other

FINAL DESIGN
Or other option

4 – Culvert Pre-Design
Site Assessment. More on this later.

All design methods
- Longitudinal Profile
- Sketches, photos, topography,
- Cross Sections
- Geo-tech

Stream simulation
- Identify and interpret reference reach
- Substrate
- Bed Structure

Site suitability for culvert

Not suitable for any culvert?
- Unstable channel
- aggrading, alluvial fan, incising
- Debris flows
- Habitat considerations

Habitat considerations at road crossings

- Direct habitat loss
 - Rearing, spawning habitats, food production
 - Mitigation
- Upstream, downstream channel impacts
- Ecological connectivity
 - Other organisms, sizes of fish
 - Debris, sediment, channel processes
 - Floodplain habitats and processes
- Channel maintenance
- Construction impacts, water quality
- Risk of culvert failure, stream diversion

Passage Design Process

Pre-Design
- Project Objective
 - Assessment, Suitability
 - Project Alignment and profile
 - Select design method
- Design: Stream Simulation, No slope, Hydraulic, or other
 - Alignment issues
 - Scour or incision, scale of the problem
 - Variability over time and distance
 - Sensitivity
 - Headcut issues
 - Restoration

Final Design
Or other option

Vertical Adjustment Potential

Alignment

- Concurrent with profile design
- Important factor for debris blockage and failure
- Consider existing and future stream channel.
Design of Stream-Road Crossings for Aquatic Organism Passage in Vermont

Plan view - three culvert alignment options on skew

- a. Culvert on stream alignment
- b. Realign stream to minimize culvert length
- c. Widen and/or shorten culvert
- Realigned channel
- Skew
- Headwalls

Plan view - three culvert alignment options on bend

- a. Culvert on stream alignment
- b. Realign stream to remove bend
- c. Widen and/or shorten culvert to preserve bend
- Realigned channel
- Headwalls
- Skew
- d. Relocate

Transitions

- Hamilton, Ohio
 - 42' span, 19' rise on natural stream alignment (Contech)

- North Carolina
 - (Con-Span)

Hourglass syndrome

- Restore upstream alignment and transition to remove backwater scour and restore sediment and bed material transport.

Restore downstream banks for stability and continuous banklines?

Project Profile

- Project profile is what is actually constructed
- Start with initial vertical adjustment potential from site assessment
- Consider profile and alignment issues concurrently
- Consider headcut issues
- A forced profile might be necessary
Design of Stream-Road Crossings for Aquatic Organism Passage in Vermont

Estimate channel adjustments for life of project

- Stable channel with variability
- Unstable channel

Profile Variability and Sensitivity

Profile punctuated by diversity

Case #1: Scour Pool

- Natural Channel Grade
- Solution is short

Case #2: Incised Channel

- Natural Channel Grade
- Incised Channel Grade
- Headcut

Newbury Creek Project Profile

- Vertical adjustment potential – possible upper limit (aggradation)
- Vertical adjustment potential – lower limit (degradation)

Scenario A:
- Profile from site assessment
- Bed to be constructed
- Consider alignment, profile issues
- Within VAP and +/- parallel
- Max pool depth above VAP
- Tie to existing channel

Scenario B:
- Regional incision.
- Vertical adjustment potential assumes no culvert.
Design of Stream-Road Crossings for Aquatic Organism Passage in Vermont

Newbury Creek Project Profile
With a forced profile

Scenario C:
Regional incision. Forced profile necessary.

Jones Creek
From downstream

Any problem here?

Rate of Channel Adjustment

1979 – Siegel Ck, LNF
1988 – Siegel Ck, LNF

Channel regrade considerations - 1

- Extent and evolution of regrade expected
- Adjacent channel
 - Upstream banks – stability, riparian, impounded wetlands?
 - Is there value of culvert as nick point? Habitat, infrastructure

Foster Cr
Clackamas County 2001

Jones Creek upstream
Inlet Control
Backwater deposition

Culvert outlet plunge

Incised channel

Project Profile?
Channel regrade considerations - 2

- Bed material
 - Backwater wedge?
 - Potential bedrock exposure?
 - Protect existing armored bed

Channel regrade considerations - 3

- Culvert and channel capacity with sediment slug
- Potential passage barriers created upstream
- Construction access to build regrade
- Opportunities for channel restoration downstream

Outlet Creek – 2005
Upstream channel
Downstream channel incised

Road Impounded Wetland

- High or clogged culvert causes permanent backwater
- Elevated water surface and wetland
- Perched culvert
- Sediment deposit
- Previous stream gradient

Headcut issues – Sediment slug
Downstream channel overwhelmed by sediment slug from headcut

Headcut issues
Bed material
Wyonochee trib - 1983
Culvert replaced
Passage Design Process

Pre-Design

- Project Objective
- Assessment, Suitability
- Project profile and alignment
- Select design method

Design: Stream Simulation, No slope, Hydraulic, or other

FINAL DESIGN
Or other option