GREAT BROOK FISH PASSAGE RESTORATION PROJECT PLAINFIELD, VERMONT

MMI #3846-03

January 4, 2011

Prepared for: The Friends of the Winooski River Montpelier, Vermont *Prepared by:* Milone & MacBroom, Inc. South Burlington, Vermont

CONTENTS

Page

1.0	Introduction	1
2.0	Culvert Descriptions	2
3.0	Survey	3
4.0	Hydrology and Existing Hydraulics and Fish Passage	3
5.0	Alternatives Analysis (Proposed Hydraulics and Fish Passage)	4
6.0	Design	5
7.0	Construction	6
8.0	Evaluation Monitoring	6
9.0	Lessons Learned	7
10.0	References	8
APPE	ENDIX A – Pictures of Culvert #1 (Upper)	A1
APPE	ENDIX B – Pictures of Culvert #2 (Middle)	A3
APPE	ENDIX C – Pictures of Culvert #3 (Lower)	.A5
APPE	ENDIX D – Plots of Channel Profile and Cross Section	A7
APPE	ENDIX E – Hydrology	10
APPE	ENDIX F – Hydraulic Existing Conditions	12
APPE	ENDIX G – Summary of Alternatives	16
APPE	ENDIX H – Alternative Analysis Results	17
APPE	ENDIX I – Hydraulic Design Forms	130
APPE	ENDIX J – Final Design Plans (Reduced Size)	442
APPE	ENDIX K – Project Evaluation Results and Photographs	155

1.0 <u>Introduction</u>

Great Brook (watershed area \sim 14.5 square miles) is located in the upper Winooski River watershed. The stream originates on Signal Mountain in Groton and then flows northwest to its confluence with the Winooski River in Plainfield.

Great Brook passes under Brook Road in Plainfield several times. Three of the concrete box culverts, constructed in 1929 and maintained by the Town of Plainfield, were identified to be barriers to fish passage (Figure 1). Each of the structure outlets is perched, and the concrete box culverts are undersized with structure widths approximately 30% of the channel bankfull width. Great Brook bends mildly or sharply as it enters the structures. The outlet drops developed due to local erosion from jetting flow through the undersized structures and from long-term stream incision. Previous assessment identified the structures to be fish blocks and not passable during most of the year.

FIGURE 1: Site Location Map

Friends of the Winooski River, in partnership with the U.S. Fish and Wildlife Service, Vermont Department of Fish and Wildlife, Vermont River Management Program, and the Town of Plainfield, conducted a project to explore alternatives to improve fish passage at each of the three culverts, design the preferred alternative, implement the design, and perform evaluation monitoring.

The goal of the project was to improve fish passage on Great Brook. Project objectives included:

- Establish fish passage during high and low flows for adult and juvenile brook and rainbow trout
- Maintain existing flood capacity at the culverts
- Avoid structural changes to the culverts if possible
- Work toward stable channel equilibrium

This report presents the highlights of the recently completed *Great Brook Fish Passage Restoration Project* in Plainfield, Vermont. Supporting information to understand the existing problem, alternatives analysis, basis of design, construction, and evaluation is contained in the appendices. Additional information is available upon request from the Friends of the Winooski River (http://www.winooskiriver.org/).

2.0 <u>Culvert Descriptions</u>

Culvert #1 at the upstream end of the project (ID 2361, elevation 1,300 feet) had a perched outlet with a downstream plunge pool (Appendix A). The channel makes a sharp bend to the right as it enters the upstream side of the culvert. The left bank is armored with riprap to reduce erosion near the structure. This culvert has some serious structural deficiencies including cracking and dislocated concrete on the right downstream wingwall and the downstream concrete apron. The structure appears to be controlling the grade of the channel as the degree of channel incision appears to be a bit higher on the downstream side of the structure.

Culvert #2 (ID 2375, elevation 1,240 feet) had a downstream standing wave indicative of a submerged outlet drop and a plunge pool (Appendix B). Wingwalls at 45 degrees guide water in and out of the structure. Riprap is located on the outside bend as the channel approaches the structure on the upstream side. A small tributary joins Great Brook on the right bank immediately downstream of the structure. The structure appears to be in good condition.

Culvert #3 (ID 2381, elevation 1,220 feet) located at the downstream end of the project site had an outlet drop associated with the concrete bottom of the box culvert with a downstream plunge pool (Appendix C). The banks were armored with riprap downstream of the structure as the brook flows next to a house before making a bend right along a natural wall of bedrock outcrop. The channel appeared a bit more incised on the downstream side of the structure than upstream, which is common for perched and undersized concrete structures that can act as grade control. Wingwalls at approximately 45 degrees direct flow into the structure, and wingwalls parallel to the flow guide flow out of the structure. The box culvert did not appear to have serious structural deficiencies.

A fourth box culvert exists in the project area that was determined to not be a barrier to fish passage. Although this structure is undersized like the others, it does not have a perched outlet. A small tributary enters Great Brook on the left bank just downstream of the structure leading to

local deposition of coarse sediment. This material is improving passage at the culvert by naturally eliminating the outlet drop, increasing water depth, and reducing water velocity.

3.0 <u>Survey</u>

Field survey was initially performed by the Vermont River Management Program and U.S. Fish and Wildlife Service. The longitudinal profile of the channel thalweg and water surface, the top and bottom of the culvert, and channel cross sections were recorded (Appendix D). An assumed vertical datum was used. Profiles extended upstream and downstream for 200 to 400 feet. Cross sections spanned the bankfull channel and in some cases extended up into the floodplain.

Additional field survey was conducted by the Vermont River Management Program with Milone & MacBroom, Inc. to extend the longitudinal profile and increase the number of cross sections in locations where design would require more detailed hydraulic modeling. Most of the additional survey was conducted at the downstream culvert (#3) where a house exists just downstream of the structure. All survey was combined to draft existing and proposed plan, profile, and cross section views.

4.0 <u>Hydrology and Existing Hydraulics and Fish Passage</u>

Peak design flows were estimated using USGS StreamStats (Olson, 2002). The 25-year storm is the design flow for these structures (VTrans, 2001) and was thus used to investigate high flow conveyance (Table 1). The 100-year flood was also evaluated to explore conditions during very large floods. Fish passage design flows and hydraulic swimming criteria of fish were determined from the *Guidelines for the Design of Stream/Road Crossings for Passage of Aquatic Organisms in Vermont* (Bates and Kirn, 2009) (Appendix E).

	Culvert #			
Flow (cubic feet				
per second)	1	2	3	
Q25	581	681	682	
Q50	698	816	818	
Q100	824	962	964	
April Q2-20*	99	119	119	
November Q2-20	29	35	35	
7Q2	1	1	1	

TABLE 1Design Flows

*Q2-20 = The 2-day 20% exceedance flow for the designated month.

FishXing (Furniss et al., 2009) was used to explore the existing and proposed hydraulic conditions and resulting fish passage at each culvert. The more detailed HEC-RAS hydraulic model (USACE, 2010) was used to explore the proposed design at the downstream culvert #3 where a house exists near the structure.

Each of the box culverts is inlet controlled, meaning that water conveyance is largely determined by the inlet of the structure. Low flow velocities ranged between 1.7 and 1.9 feet per second while high flow velocities were between 3.3 and 6.3 feet per second (Appendix F). Outlet drop ranges between 0 and one foot. Minimum flow depth was between 0 and 0.5 feet.

Water velocity, outlet drop, and minimum depth of flow were evaluated versus the fish swimming criteria. Multiple types of fish passage barriers existed at each culvert for brook trout (Table 2).

Culvert	Lifestage	Flow	Barrier Type(s)
1	Adult	Low	depth
1	Adult	High	velocity
1	Juvenile	Low	depth, velocity
1	Juvenile	High	velocity
2	Adult	Low	drop, depth
2	Adult	High	drop, velocity
2	Juvenile	Low	drop, depth, velocity
2	Juvenile	High	drop, velocity
3	Adult	Low	drop, depth
3	Adult	High	drop, velocity
3	Juvenile	Low	drop, depth, velocity
3	Juvenile	High	drop, velocity

TABLE 2Existing Conditions Fish Barriers

5.0 <u>Alternatives Analysis (Proposed Hydraulics and Fish Passage)</u>

Alternatives explored included increasing the tailwater control downstream of the structure (0.5 to 2.0 feet), increasing the hydraulic roughness of the downstream channel (N=0.045 to 0.060), roughening the culvert (N=0.020 to 0.035), and decreasing the downstream channel slope (0.5 to 2.0%) (Appendix G). Baffles and other alternatives that would directly influence the culvert structure were not pursued as the town preferred that the structures remain unchanged. Each alternative was evaluated for adult and juvenile fish during low and high fish passage flows. In addition, alternatives were evaluated under peak flood conditions to assess conveyance.

The results of the hydraulic model indicated that increasing downstream tailwater control was the primary method of improving fish passage (Appendix H). Raising the tailwater reduced the outlet drop, lowered water velocity, and increased minimum depth of flow at each culvert. Only minor improvements in fish passage took place for other alternatives.

The alternatives analysis indicated that increasing the downstream tailwater by two feet was the preferred alternative for culvert #1 (upper) and culvert #3 (lower) to improve fish passage while maintaining flood conveyance. Flood conveyance at the shorter culvert #2 (middle) was reduced

more than the other structures, so the preferred alternative was to only increase the tailwater by 1.5 feet. Fish passage conditions improved substantially under proposed conditions (Table 3).

		Percent Passage over Fish Passage Design Flow Range			
		Bi	rook Trout	Rair	nbow Trout
		(1-29 cub)	ic feet per second)	(1-99 cubic feet per second)	
	Tailwater Increase	Adult	Juvenile	Adult	Juvenile
Culvert 1 ((upper)				
Existing	0.0	0	0	0	0
Proposed	2.0	100	100	100	64
Culvert 2 (middle)					
Existing	0.0	0	0	0	0
Proposed	1.5	100	27	71	18
Culvert 3 (lower)					
Existing	0.0	0	0	0	0
Proposed	2.0	100	39	68	22

TABLE 3Predicted Fish Passage Improvements

In the end, the hydraulic design approach (Bates and Kirn, 2009) illustrated that fish passage could be improved by increasing tailwater control while maintaining flood conveyance at the inlet-controlled box culverts (Appendix I).

6.0 <u>Design</u>

Design plans were drafted for each culvert including details of the design elements (Appendix J). The design for culvert #1 (upper) included increasing the tailwater control by two feet using a rock weir, roughening the channel with random boulders for 50 feet downstream of the weir, selectively placing boulders at a designated cross section to increase depth, and placing stone at the undermined outlet of the structure. The weir is the primary tailwater control. The boulders roughen the channel and increase tailwater control a small amount and also allow resting locations for fish moving upstream to the weir and culvert. Great Brook contains many falls and nearby boulders that fish naturally use to rest before or after passing challenging areas. The stone fill at the boulder cross section allows a stepped profile approaching the culvert. The fill under the structure was required to stabilize the undermined apron. This element will increase the operational life of the structure.

The design for culvert #2 (middle) included a stone weir that is 1.5 feet tall, roughening the channel with random boulders for 50 feet downstream of the weir, selectively placing boulders at a designated cross section to increase depth, and placing stone at the undermined outlet of the structure. The weir was located approximately 100 feet downstream, where the natural tailwater control existed.

The design for culvert #3 (lower) included a two-foot tall stone weir, roughening the channel with random boulders for 60 feet downstream of the weir, selectively placing boulders at a designated cross section to increase depth, and placing stone at the undermined outlet of the structure. As design progressed, a HEC-RAS model was created for culvert #3 to confirm that floodwaters would not reach the nearby house located on the right bank approximately 50 feet downstream of the culvert. This increased level of analysis was only utilized for culvert #3 where there was potential interaction with human infrastructure other than Brook Road. The modeling generally confirmed the hydraulic results from the FishXing model that capacity remained consistent in the channel and structure for existing and proposed conditions.

7.0 <u>Construction</u>

Hebert Excavation of Williamstown, Vermont won the bid for the project and began construction on July 28, 2010 under low flow conditions. Construction was completed on August 13, 2010. Construction generally proceeded smoothly with all design elements and regulatory requirements being met. Local landowners were supportive of and interested in the installation of the project.

Some heavy rains and short floods took place during construction. The varying flow conditions caused minor delays yet turned out to be helpful for fine-tuning the weirs to operate over as wide a range of flows as possible.

Many adjustments were required during construction to achieve a 1.5 to two-foot tailwater increase to backwater the culvert while maintaining gaps in the weir that were fish passable. The design was altered in the field, and rocks were placed in select locations immediately downstream of the weir to create a stepped water surface profile and fish passage channels through the weir. This secondary set of rocks increased the range of fish passable flows.

Another important aspect of achieving fish passage was to limit the permeability of the lower portion of the weir. This detail was essential to allow for good control of the water surface level with the boulders that made up the top row of the weir. Gravel excavated from the channel to install the base of the weir was used to fill in the gaps of the lower weir. In this method, boulders could be nudged to change the size of the gaps and increase the likelihood of fish passage.

8.0 <u>Evaluation Monitoring</u>

Several field trips were conducted following construction to evaluate weir stability and whether suitable fish passage conditions were being achieved over a range of flows (1.8 to 25 cubic feet per second). The installations appeared to be functioning properly, and some fish were observed in the culverts and immediately upstream of the weirs during field observations. All culverts are backwatered over almost all flow conditions leading to low velocities, suitable water depths, and no outlet drops (Appendix K). The installed weirs are now the primary fish movement obstacles, and they appear to remain passable through gaps in the rocks although bursting swimming speed will be required to pass the structures at the high fish passage flows. Weirs remain intact, and

boulders appeared to be in their installed location during the latest observation on November 11, 2010, which was after the large October 1 flood in the region (2- to 25-year magnitude). Monitoring will continue whenever project team members are in the area of Great Brook. Should an adjustment be needed, the contractor will mobilize for touchup work as part of the original construction contract.

9.0 <u>Lessons Learned</u>

The following list highlights lessons learned that should be carried forward to future fish passage restoration projects.

- Long profile: Survey must extend far enough downstream to establish channel slope between the culvert and tailwater control, and the tailwater control and the next downstream grade control. The same holds true for upstream of the culvert. The short amount of additional time to collect the additional survey data is essential for thorough hydraulic analysis and for estimating the vertical adjustment range (Bates and Kirn, 2009).
- Cross section: Survey must close off all cross sections to high ground so that channel dimensions, floodplain elevation, and high ground are properly located. Be sure to document important sections such as expansions, contractions, and grade controls.
- Get a good understanding of channel and structure roughness values (N) during field assessment. Observations of channel particle sizes and structure material/condition will allow determination of N from tabulated values (e.g., see reference in USACE, 2010).
- Evaluate the structural condition of the culverts and if and how this would change under the proposed alternative.
- Understand the flood history at the site. Designs should maintain or improve conveyance if possible.
- Review local and upstream sediment and debris size in relation to the structure dimensions to explore the potential of a clogged structure. Consult the town, state, or landowner who owns and maintains the structure on the history of clogging.
- Explore the ice jam history at the channel and structure.
- When designing weirs, extend the typical analysis with FishXing or HEC-RAS used during the hydraulic design method to include more detailed calculations on weir flow to increase the chances of fish passage at these locations (e.g., Caltrans, 2007). Porosity of the structure at each elevation and gap size between boulders must be explicitly considered.

- At the beginning of the project, allocate time to perform post-construction monitoring to evaluate performance.
- Allocate time for the Project Engineer to work with the Construction Contractor to achieve design objectives and ensure permit compliance. Subtle changes in installation (e.g., the direction a rock is pointed), that are typically beyond the level of detail in a final design plan, can have a strong influence on the amount of fish passage achieved.
- Include contractor time in the original Request for Bids to return to the site after the first year of installation to make adjustments if needed.
- Attempt to make contact with the adjacent landowners as soon as the project begins. In addition to relying on the local land records, talk with neighbors and other local people who might know and be able to contact the landowners.
- Identify and contact all Federal, State and local agencies, boards and staff that may have jurisdiction over the culverts or river channel early in the project.

10.0 <u>References</u>

- Bates, K. and R. Kirn, 2009. Guidelines for the Design of Stream/Road Crossings for Passage of Aquatic Organisms in Vermont. Prepared by Kozmo, Inc. with Vermont Department of Fish and Wildlife, Agency of Natural Resources, Waterbury, VT.
- Caltrans, 2007. Fish Passage Design for Road Crossings: An Engineering Document Providing Fish Passage Design Guidance for Caltrans Projects. California Department of Transportation, Sacramento, CA.
- Furniss, M., M. Love, S. Firor, K. Moynan, A. Llanos, J. Guntle, and B. Gubernick, 2009. Fishxing 3 (V. 3.0.15). USDA-Forest Service, Pacific Northwest Research Station, Aquatic and Land Interactions Program, Corvallis OR.
- Olson, S., 2002. Flow-Frequency Characteristics of Vermont Streams. WRI Report 02-4238. U.S. Geological Survey in cooperation with the Vermont Agency of Transportation, Pembroke, NH.
- USACE, 2010. Hydrologic Engineering Center River Analysis System (HEC-RAS) (V. 4.1). U.S. Army Corps of Engineers, Hydrologic Engineering Center, Davis, CA.
- VTrans, 2001. Hydraulics Manual. Vermont Agency of Transportation, Montpelier, VT.

3846-03-d3010-rpt.doc

APPENDIX A – Pictures of Culvert #1 (Upper)

Upstream Channel

Upstream Face

Downstream Face

Downstream Channel

APPENDIX B – Pictures of Culvert #2 (Middle)

Upstream Channel

Upstream Face

Downstream Face

Downstream Channel

APPENDIX C – Pictures of Culvert #3 (Lower)

Upstream Channel

Upstream Face

Downstream Face

Downstream Channel

APPENDIX E – Hydrology

Hydrology Calculations Great Brook Fish Passage Restoration Project December 9, 2009

INFORMATION				
Culvert #	1	2	3	
Culvert location	Upstream	Middle	Downstream	
Lat	44.22453	44.23168	44.23308	
Long	-72.4013	-72.4063	-72.40652	
Elevation	1,300	1,240	1,220	
USGS STREAMSTATS	(Interactive	Website)		
Lat	44.2247	44.232	44.2329	
Long	-72.4013	-72.4063	-72.4068	
DA (sq mi)	6.18	7.39	7.41	
DA Lakes (%)	0.0601	0.0576	0.0574	
DA >1200ft (%)	100	100	100	
GF	190,257	190,579	190,584	
Q2 (cfs)	234	275	276	
Q5	352	414	415	
Q10	441	517	519	
Q25	581	681	682	
Q50	698	816	818	
Q100	824	962	964	
Q500	1,160	1,350	1,350	
VT FISH PASSAGE DE	SIGN FLOW	S (Bates and Kir	n, 2009)	
Northing (VSPC)	191,584	192,387	192,522	GIS
P (in)	40	40	40	Olson, 2002
April Q ₂₋₂₀ (cfs)	99	119	119	April Q2-20 = ABasin x (- 41.15 + 0.000038 x Northing + 1.248 x P)
				+ 0.4555 x P + 3.0855 x logN
Nov Q ₂₋₂₀ (cfs)	29	35	35	(1+ ALakes))
7Q2 (cfs)	1	1	1	0.139 cfs per square mile

Approximate summary of floods where Brook Road	d in Plainfield was
overtopped	

Flow in Montpelier	Frequency (year) in Montpelier
57,000	500
10,100	2
13,800	10
3,000	1
	Flow in Montpelier 57,000 10,100 13,800 3,000

*Assume that large floods are regional nor'easters so local flows may be of the same relative magnitude as the main stem gauge data. Flood data and frequency analysis from USGS gauge Winooski River at Montpelier (04286000). Flow and flood frequency data only approximate for Great Brook.

APPENDIX F – Hydraulic Existing Conditions

Hydraulic Criteria and Existing Conditions Aquatic Organism Passage Results Great Brook Fish Passage Restoration Project December 21, 2009

VT BROOK TROUT HYDRAULIC CRITERIA (BATES AND KIRN, 2009)

Lifestage	Adult	Juvenile
Maximum velocity (fps)	2.60	1.00
Maximum outlet drop (ft)	0.67	0.33
Target low flow depth (ft)	0.35	0.18

EXISTING CONDITIONS CULVERT HYDRAULICS

Culvert #	1	2	3
Culvert location	Upstream	Middle	Downstream
Low flow - maximum velocity (fps)	1.73	1.72	1.91
Low flow - outlet drop (ft)	0.09	1.00	1.03
Low flow - minimum depth (ft)	0.03	0.03	0.04
High flow - maximum velocity (fps)	3.31	5.65	6.27
High flow - outlet drop (ft)	0.00	0.69	0.82
High flow - minimum depth (ft)	0.50	0.35	0.44

EX Culvert 1 - Upper Depth vs. Distance Down Culvert at 29.00 cfs

EX Culvert 2 - Middle Depth vs. Distance Down Culvert at 681.00 cfs

EX Culvert 2 - Middle Depth vs. Distance Down Culvert at 35.00 cfs

EX Culvert 2 - Middle Depth vs. Distance Down Culvert at 962.00 cfs

EXISTING CONDITIONS AQUATIC ORGANISM PASSAGE (AOP) RESULTS					
(Differences = Culvert value - AOP criteria: velocity barrier > 0; drop barrier > 0; depth barrier < 0.					
Underline indicates barrier.)					
CULVERI 1 (UPSTREAM)					
	Adult	Adult	Juvenile	Juvenile	
Flow	Low	High	Low	High	
Barrier type(s)	depth	velocity	depth, velocity	velocity	
Location(s) of barrier	throughout	outlet	throughout, outlet	outlet	
Maximum velocity difference (fps)	-0.87	<u>0.71</u>	0.73	<u>2.31</u>	
Outlet drop difference (ft)	-0.58	-0.67	-0.24	-0.33	
Minimum depth difference (ft)	-0.32	0.15	-0.15	0.33	
CULVERT 2 (MIDDLE)					
Lifestage	Adult	Adult	Juvenile	Juvenile	
Flow	Low	High	Low	High	
			drop, depth,	drop,	
Barrier type(s)	drop, depth	drop, velocity	velocity	velocity	
			outlet,		
Leasting (a) of hermion	outlet,		throughout,	outlet,	
Location(s) of barrier	throughout		outlet	outlet	
Maximum velocity difference (fps)	-0.88	<u>3.05</u>	0.72	4.65	
Outlet drop difference (ft)	0.33	0.02	<u>0.67</u>	0.36	
Minimum depth difference (ft)	<u>-0.32</u>	0.00	<u>-0.15</u>	0.18	
CULVERT 3 (DOWNSTREAM)					
Lifestage	Adult	Adult	Juvenile	Juvenile	
Flow	Low	High	Low	High	
	due a de atle	dana sa ta situ	drop, depth,	drop,	
Barrier type(s)	drop, deptn	arop, velocity	Velocity	velocity	
	outlet		throughout	outlet	
Location(s) of barrier	throughout	outlet, outlet	outlet	outlet	
Maximum velocity difference (fps)	-0.69	3.67	0.91	5.27	
Outlet drop difference (ft)	0.36	0.15	0.70	0.49	
Minimum depth difference (ft)	-0.31	0.09	-0.14	0.27	

APPENDIX G – Summary of Alternatives

Proposed Conditions Planning Great Brook Fish Passage Restoration Project December 21, 2009

PROPOSED CONDITIONS

Raise tailwater (ft)	Roughen channel (n)	Roughen culvert (n)	Decrease downstream channel slope by (%)
0.5	0.045	0.020	0.5
1.0	0.050	0.025	1.0
1.5	0.055	0.030	1.5
2.0	0.060	0.035	2.0

OBJECTIVES

Aquatic Organism		
Passage Level	Lifestage	Flow
1	Adult	Low
2	Adult	High
3	Juvenile	Low
4	Juvenile	High

APPENDIX H – Alternative Analysis Results

Culvert: #1 (Upstream) Alternative: Increase Tailwater Elevation Project: Great Brook AOP Restoration Updated: January 29, 2010

Culvert: #1 (Upstream) Alternative: Increase Roughness of Downstream Channel Project: Great Brook AOP Restoration Updated: January 29, 2010

Culvert: #1 (Upstream) Alternative: Decrease Slope of Downstream Channel

Culvert: #2 (Middle) Alternative: Increase Tailwater Elevation Project: Great Brook AOP Restoration Updated: January 29, 2010

Culvert: #3 (Downstream) Alternative: Increase Roughness of Downstream Channel Project: Great Brook AOP Restoration Updated: January 29, 2010

Culvert: #2 (Middle) Alternative: Decrease Slope of Downstream Channel Project: Great Brook AOP Restoration Updated: January 29, 2010

Culvert: #3 (Downstream) Alternative: Increase Tailwater Elevation Project: Great Brook AOP Restoration Updated: January 29, 2009

Culvert: #3 (Downstream) Alternative: Increase Roughness of Downstream Channel Project: Great Brook AOP Restoration Updated: January 29, 2010

Culvert: #3 (Downstream) Alternative: Increase Roughness of Culvert Project: Great Brook AOP Restoration Updated: January 29, 2010

Culvert: #3 (Downstream) Alternative: Decrease Slope of Downstream Channel Project: Great Brook AOP Restoration Updated: January 29, 2010

Aquatic Organism Passage Results Summary - Increase Tailwater Alternative Great Brook Fish Passage Restoration Project February 1, 2010

Culvert 1 (upper)	Percent Passage Over Fish Passage Design Flow Range						
	Brook Tro	out (1-29 cfs)	Rainbow Trout (1-99 cfs)				
Tailwater Increase	Adult	Juvenile	Adult	Juvenile			
0.0	0	0	0	0			
0.5	96	24	65	16			
1.0	100	58	100	33			
1.5	100	89	100	49			
2.0	100	100	100	64			

Culvert 2 (middle)	Percent Passage Over Fish Passage Design Flow Range							
	Brook Tro	out (1-29 cfs)	Rainbow Trout (1-99 cfs)					
Tailwater Increase	Adult	Juvenile	Adult	Juvenile				
0.0	0	0	0	0				
0.5	0	0	0	0				
1.0	0	0	2	0				
1.5	100	27	71	18				
2.0	100	55	100	34				

Culvert 3 (lower)	Percent Brook Tro	Passage Over Fis out (1-29 cfs)	sh Passage Design Flow Range Rainbow Trout (1-99 cfs)			
Tailwater Increase	Adult	Juvenile	Adult	Juvenile		
0.0	0	0	0	0		
0.5	0	0	0	0		
1.0	0	0	8	0		
1.5	77	20	44	12		
2.0	100	39	68	22		

APPENDIX I – Hydraulic Design Forms

Vermont Fish Passage Design Data Checklist Hydraulic and Low-Slope Designs

This is a summary for design and review of a road / stream crossing using the Hydraulic or Low-Slope design methods for fish passage at culverts. Data is summarized to show design milestones, assumptions, and conclusions. This isn't necessarily all of the data required for a complete design. All parts of the data data sheet are normally needed for a Hydraulic Design. Those marked with "(LS)" are normally needed for a Low-Slope Design.

A plan view sketch and a long profile should be attached to this design data form. See the design guide for background for all data and details recommended on sketches.

Describe any additional details necessary for the design on additional sheets.

FIOJECL (LS)	
Project name and ID	Great Brook AUP Restoration (3846-03)
Stream	Great Brook
Road, location	Brook Road culvert (#1) (upstream)
Lat / Long (d/m/s) (lec.)	44, 22453 -72, 4013
ID Team members	Ann S. Madeleine L. Shayne J. Rich K. Roy
Date	1 5 2010
Brief description of project	Improve passage for brock trout at series of three cubuck on Great Brook
Culvert #1 Screens: AC	IP= orange, RP= MML, GC= Lemon-line
Project type (new, retrofit, replacem	ent) Channel work, possibly retrafit
Design method: (hydraulic or low-slo	ope) Hudraulic
Does this design satisfy design met	hod criteria? If not, explain deviations and limitations.
(Y)/N	
Site characteristics (LS)	
Is there an existing Culvert	(s)? (Y/ N
Existing culvert perched?	Y/ N Height of perch 1 ft +/- (article large /
Downstream channel incised?	? (Ŷ) / N Depth of incision, 0,5 ♀ + +/
Evidence of incision	Minor experien on bank the
Upstream backwater deposition	on Y/N
Evidence and extent	Some minor accumulation of cobble
	but no strong backwater effects. Accomulation
	could be all to bend reducing sediment
	transport.
VT Hydraulic / Low-Slope Design Data F	Form - 02/08 Page 1 / 4

Project (LS)

Project Great Brook AOP - Culvert 1

2 - BASIS OF DESIGN

Target Species

Species			Movement	Hydraulic criteria				
	Age class (Juv, Adult)	Fish length (in)	seasons (months)	Swim speed (fps)	Max. Doe Swint priode (ft)	Min depth (ft)		
	Brook Trout	Adutt	6-10	Sept - Nor	2.6	0.67	0.35	
	Brook Trout	Juv.	3-5	Sept - Nov	1.0	0.33	0.18	
Describe data sources VT AOP Guidelines (Bates + Kirn, 2009))			

Hydrology

Watershed	I characteristics	(LS)
-----------	-------------------	------

Area

6.18 sq miles

Mean elevation 1, 300 ft above sea level

Mean annual precipitation 40 inches

.....

Other hydrologic or flow characteristics (hydrologic province, area of lakes, northing, etc.) (LS)

% DA Jakes = 0.06	- 7.	DA wit	n elevation	over 1, 200	St= 100	GF = 190, 257
Northing (VSPC) = 191	584					

Peak design flows (LS)	Derived flow (cfs)	Standard error (%)	Design flow (cfs)
2 - yr event	234	42	234
25 - yr event	581	42	581
100 - yr event	824	44	824

90% prediction 122 - 449 301 - 1120 412 - 1650

Fish passage design flows

Species	Age class	High design flow (cfs)	Q7L2 (cfs)		
Brook Traut	Adult/Ju	29	1		
			_		

Describe how hydrology was calculated and any assumptions (e.g. future conditions) made. (LS)

Kim, 2009)

.....

USGS Stream Stats

VT Hydraulic / Low-Slope Design Data Form - 02/08

GREAT BROOK FISH PASSAGE RESTORATION PROJECT PLAINFIELD, VERMONT DECEMBER 2010 PAGE A31

Page 2/4

Project Great Brook AOP - Culvert 1 ...

Project ID <u>A1 # 3846~O3</u> Date 15 2010

3 - DESIGN

Channel (LS)

		Downstream	Upstream]
	Average slope	5.8 %	2.0 %	1
	Average bankfull width	~ <i>30</i> ft	~ <i>30</i> ft	not clearly intelled in Surrey
Verify w1.	Bed Elevation - low potential profile	~ 997	~ 999	
surreyors tmore obs.	Bed Elevation - high potential profile	~ 1000	~ (001	datum (ft)
	Description of channel	scove pool glidle bendling let we bookfull bench , grant/cal	t cobble/ boulder van that ble beuds night w). RB riprap	1
	Channel roughness (n)	0.040	0.045	1
	Bed Elevation - project profile	999.7	999.8	1
	Elevation of downstream control	999.4	TW riffle	-

How i	s profile	controll	ed?	Tai	water	r.ffle	low	stream	of	Scou	r p	100	w	ven
	large	boulder	bend	at	inlet,	rough	ness	due	ło	رياطي لو	+ 60	ulde	ur.	culvert
<u> </u>						bottom	, to	remain	~					

Culvert Description (LS)

Dimensions, Elevations

	Existing Culvert		Proposed	Culvert
Span	17.5	ft		
Rise	8.9	ft		ft
Upstream Invert Elevation	999,84		0,	
Downstream Invert Elevation	999.67		came	
Culvert Length (incl aprox)	37.8	ft	20	ft
Slope	O. 5	. %		%

Note: for bottomless structures, report elevations of tops of footings.

Description of proposed culvert; Chose one or more in each line

Shape:	Round - Arch -	Box	(culvert	to likely unchanged	rmain
Material:	Corrugated metal -	Smooth metal -	Concrete		
Corrugation	dimensions:				

Style

Full pipe - Bottomless

VT Hydraulic / Low-Slope Design Data Form - 02/08

Page 3/4

Project <u>Brook</u> AOP - Culvert 1 Project ID <u>MII # 3846-03</u> Date 15 2010

4 - DESIGN

Fish Passage Hydraulics

	Flow (cfs)	Tailwater elev	Rough- ness (n) ^{ω γκ†}	Velocity (fps) _{m-x}	Depth (ft)	EDF (ft-lb/sec/cuft)	Adult / Juv Passability (%)	
EX 7Q2		999.59	0.015	1.73	0.03	0.48		ine x
Nov Q2-20	29	1000.1	3. /	4.39	0,46	1.01	-010	°°
00 762	1	001.5	5	0.04	1.78	0.01	looling	Raise
PA Nov Quezo	29	1002.1	\checkmark	0.87	J.34	O. 20	100/100	zĤ

Describe roughness (corrugation dimensions, bed material or roughened channel description, baffle geometry, etc) ,

Boulders	cobble	uj 2	chann	el	and	warn	concrete	in when	t.
Proposed	tailwater	control	to	add	roughnes	s, and	l control	grade.	

Describe methods and sources of data for fish passage hydraulic calculations.

Fish Xing	

High flow hydraulics (LS)

	Event	Flow (cfs)	Tailwater elevation	Rough- ness (n)	Water surface elevation upstream	Headwater (HW/culvert rise)	* maintain, yet
~ (Q2	234	1003.D	0.015	1003.47	0.41	Control
YK)	Q25	581	1003.7	5	1005.39	0.63	\checkmark
(Q100	824	1004.0		1006.38	0,73	good capacity
	EX Q25	581	1001.7	¥	1004.97	0.58	
Desc	ribe methods a	nd sources of Stream Stat	data high flow	hydraulic calo Fish Xing	Chrck w].	105 *5 no	mographs
Ro	ad and Ali Height of fill on	gnment (upstream fac	LS) ~ [™]	culvertine. 99 culvertiop 10 road de 10	9.8 12.8]~4' cover ft. (bottom of s	slope≅bottum of	culturent to road)
Prop	osed culvert si Culvert to chan	kew (parallel nel <u>~</u> C	is 0 degrees)	To re	nain as exis Road to culvert	ting.~(60 degrees
Prop	osed alignmen	t, transition	changes	none	5		
Desc	ribe permanen	t benchmark	and elevatio	n .	"STA_I" E	L 1000 assu	med Satur
-	near DS sect	on right	yt bank. "	STA-2" ET	L 1001.31 nea	ur US sect	ion LB.

VT Hydraulic / Low-Slope Design Data Form - 02/08

Page 4 / 4

Vermont Fish Passage Design Data Checklist Hydraulic and Low-Slope Designs

This is a summary for design and review of a road / stream crossing using the Hydraulic or Low-Slope design methods for fish passage at culverts. Data is summarized to show design milestones, assumptions, and conclusions. This isn't necessarily all of the data required for a complete design. All parts of the data data sheet are normally needed for a Hydraulic Design. Those marked with "(LS)" are normally needed for a Low-Slope Design.

A plan view sketch and a long profile should be attached to this design data form. See the design guide for background for all data and details recommended on sketches.

Describe any additional details necessary for the design on additional sheets.

- ·

.

Project (LS)	
Project name and ID	Great Brook AOP Restoration (MMIH 3846-03)
Stream	Great Brook
Road, location	Brook Read, culvert (#2) (middle)
Lat / Long (طل ه/s) (هد)	44, 23168 -72,4063
ID Team members	Ann S., Madeleine L., Shanne J. Rich K. Roy S.
Date	1 5 2010
Brief description of project	Improve passage for brook trout at series of three culverts on Great Drook
Culvert #2 screens:	ADP = Red , RPS = MML, GC = Yellow
Project type (new, retrofit, replacem	ient) Change work Possibly intropit
Design method: (hydraulic or low-sl	ope) Hudraulic
Does this design satisfy design met () / N	hod criteria? If not, explain deviations and limitations.
Site characteristics (LS)	
Is there an existing Culvert	l(s)? (Ÿ)/N
Existing culvert perched?	
Downstream channel incised	? (Y) N Depth of incision <u>1</u> (+ +/
Evidence of incision	Some bank erusion / collapse. Fallen free
spanning chand.	Cubiert Soundation portly exposed
Upstream backwater depositi	on Y/(N)
Evidence and extent	Some minor accumulation but no
	strong bachwater effects
	9

VT Hydraulic / Low-Slope Design Data Form - 02/08

Page 1/4

Project Great Brook AOP - Colvert 2

Project ID MM1 # 3846-03 Date 1/5/2010

2 - BASIS OF DESIGN

Target Species

			Movement	Hydraulic criteria			
Species	Age class (Juv, Adult)	Fish length (in)	seasons (months)	Swim speed (fps)	Swinn Rhode (++)	Min depth (ft)	
Brook Trout	Adult	6-10	Sept-Nov	2.6	0.67	0.35	
Brook Trout	5	3-5	11 11	1.0	0.33	0.18	
Describe data sources	V	r AOP G	viculinus (Bates +	Kim. 2009)	

Hydrology

Watershed chara	cteristics (LS)						
Area	7.4	_sq miles		Mean eleva	ation), 240	ft above sea leve	l
Mean annua	I precipitation	40	inches			_	
Other hydrologic	or flow charact	eristics (hyd	rologic pro	ovince, are	a of lakes, no	rthing, etc.) (LS)	
% DA lak	« = 0.0 = es	7. DA EL	our 1200	H= 100.	GF= 190,	579	
Northing	(VSPC) = 192	, 387					
-		Standard					

Pea	ak design flows (LS)	Derived flow (cfs)	error (%)	Design flow (cfs)	
	2 - yr event	275	42	275	
	25 - yr event	681	42	681	
	100 - yr event	962	44	962	

90% prediction range
143-529
353-1310
481-1920

Fish passage design flows

Species	Age class	High design flow (cfs)	Q7L2 (cfs)
Brook Trout	Adu # / Jur	35	١

Describe how hydrology was calculated and any assumptions (e.g. future conditions) made. (LS)

VT AOP Guillelines (Bates + Kum, 2009) fish passage design flows;

USGS Stream State

VT Hydraulic / Low-Slope Design Data Form - 02/08

Page 2 / 4

3 - DESIGN

Channel (LS)

		Downstream	Upstream
	Average slope	1.7 %	2.3 %
	Average bankfull width	~35 ft	~ 30 ft
Verify w.	Bed Elevation - low potential profile	~ 995	~996
+ more field	Bed Elevation - high potential profile	~998	~ 998
062-	Description of channel	boulder cobble riffle bend vight. trib enters RB	scour pool, twittle control, pool, channe bunk left
	Channel roughness (n)	0.040	0.045
	Bed Elevation - project profile	996. 3	996.5
	Elevation of downstream control	995.2	TW riffle
How is	profile controlled? Tailwater y	, ffle Downstream of	scour pool, minor bend
	at net, boulder/ cobble your	Inness, culvert bot	tom (to remain)

Culvert Description (LS)

Dimensions, Elevations

	Existing Culvert	Proposed Culvert
Span	17.5 ft	
Rise	5.3 ft	ft
Upstream Invert Elevation	996.53	
Downstream Invert Elevation	996.39	(Samos)
Culvert Length	35.14 ft	t ft
Slope	0.40 %	%

Note: for bottomless structures, report elevations of tops of footings.

Description of proposed culvert; Chose one or more in each line

Shape:	Round - Arch - Box	(culvert (remain	to likely Unchanged
Material:	Corrugated metal - Smooth meta	al - Concrete	
Corruga	ation dimensions:		

Style

Full pipe - Bottomless

VT Hydraulic / Low-Slope Design Data Form - 02/08

Page 3/4

Project Great Brook AOP - Colvert 2

Project ID <u>.vml # 3846-03</u> Date <u>1\\$\</u>2010

4 - DESIGN

.

Fish Passage Hydraulics

	Flow (cfs)	Tailwater elev	Rough- ness	Velocity (fps)	Depth (ft)	EDF (ft-lb/sec/cuft)	A&u₩ / J Passability
702	1	995.4	0,015	1.7 .	0.03	0.4	(%)
Nov Gz-20	35	996.1	6	5.7	0.4	1.4	- 0/0
702	1	996.9	/	0.2	0.4	0.04	loolar
Vor Q2-20	35	997.5	ł	2.4	1.0	0.5	100/27
Desc	cribe roughness	s (corrugation	dimensions, b	ed material or	roughened chann	nel description,	baffle 🔾 🗤
geon	Boulder:	· / cobble	s warned	concrete	on cultert	bottom and	sidewalls
	Tailwate	r control	to add	roughness			
Hid	th flow hv	Fish Xing	s pro	<u>sions</u>	nney.		
	Event	Flow (cfs)	Tailwater elevation	Rough- ness (n)	Water surface elevation upstream	Headwater (HW/culvert rise)	
	Q2	275	999.2	0.015	1000.0	0.65	
PRS	Q25	681	1001,7	6	1003.125	1.24	sub-critical
(Q100	962	\003.5	/	1006.2,5).83	
EX	Q25	681	998.4	¥	1002.3	1.10	super-critical
Desc - - Roa	ribe methods a Fish	nd sources of Xing, H	data high flow <u>DS №5 ∧</u> LS) ~9′ [colvect invect the colvect invect the colvect top 100 road & 1009	ulations.	Stream Stat	<u> </u>
Prop	osed culvert s	kew (parallel	e: is 0 degrees)		tt. (botton en	nbonkment ~	@ Dotton cul
(Culvert to chan	nel <u>~</u> O	degrees		Road to culvert	~ 6	5 degrees
	osed alignmer	t, transition	changes	na	ne		degrees
Propo	-						

Vermont Fish Passage Design Data Checklist Hydraulic and Low-Slope Designs

This is a summary for design and review of a road / stream crossing using the Hydraulic or Low-Slope design methods for fish passage at culverts. Data is summarized to show design milestones, assumptions, and conclusions. This isn't necessarily all of the data required for a complete design. All parts of the data data sheet are normally needed for a Hydraulic Design. Those marked with "(LS)" are normally needed for a Low-Slope Design.

A plan view sketch and a long profile should be attached to this design data form. See the design guide for background for all data and details recommended on sketches.

Describe any additional details necessary for the design on additional sheets.

Project (LS)					
Project name and ID	Great Brook AOP Restoration (MMI# 3246-0)				
Stream	Great Brook				
Road, location	Brook Road, culvert (#3) (damstream)				
Lat / Long (d/m/s) (Qec.)	44. 23308 -72.40652				
ID Team members	Ann S., Medeleine L., Shayne J., Rich K., Roy S.				
Date	1 4 10				
Brief description of project	Improve passage for brook trout at series of three cuberts on Great Brook				
Culvert #3 Screens: A	OP= Orange, RP= MLL, GC= Orange				
Project type (new, retrofit, replacem	ent) Chave work. Possibly retrofit.				
Design method: (hydraulic or low-sl	ope) Hydranlic				
Does this design satisfy design method criteria? If not, explain deviations and limitations.					
Site characteristics (LS) Is there an existing Culvert	(s)? () / N				
Existing culvert perched?	√/ N Height of perch <u>1 H +/- (key</u> issue)				
Downstream channel incised? (Y) N Depth of incision $1 + \frac{1}{V}$					
Evidence of incision	Riprop on alls banks along house ou straight				
channel section,	outlet drop, profile growers to show incision als Tw control				
Upstream backwater depositi	on (Y)/N				
Evidence and extent	local aggradation of cobbles ups culvert				
riprop lining o	which of bend on right bank approach.				

VT Hydraulic / Low-Slope Design Data Form - 02/08

Page 1 / 4

Project Great Brook AOP - Culvert 3

Project ID <u>MM # 3846-03</u> Date 1 4) 2010

2 - BASIS OF DESIGN

Target Species

	Species	Age class Fis (Juv, Adult)		Movement seasons (months)	Hydraulic criteria		
			Fish length (in)		Swim speed (fps)	Swinn Inode	Min depth (ft)
	Brook Trout	Allt	6-10	Sept-Nov	2.6	0.67	0.35
	Ņ	J.v	3-5	"	1.0	0,33	0.18
l							
Desc	ribe data sources	VT	AOP G	ndelines (Bates + K	lin, 200	(19
Hyc _{Wate}	rshed characteristics (LS)						
	Area <u>7.41</u>	sq miles	Mea	an elevation	1,220	ft above s	ea level
	Mean annual precipitation	40	inches				
Othe	r hydrologic or flow character	istics (hydro	logic provin	ce, area of l	akes, nort	thing, etc.) (LS)
	% DA Jakes = 0.06,	% DA EI	-> 1200 ft	= 100,	GF- 19	0, 584.	
_	Northing (VSPC) = 192, 522						

Pea	ak design flows (LS)	Derived flow (cfs)	Standard error (%)	Design flow (cfs)
	2 - yr event	276	42	276
	25 - yr event	682	42	682
	100 - yr event	964	44	964

90% preduction vange
144 - 530
354-1310
482-1930

Fish passage design flows

Age class	High design flow (cfs)	Q7L2 (cfs)
AllH/Ju	35	1
	Age class	Age class High design flow (cfs)

Describe how hydrology was calculated and any assumptions (e.g. future conditions) made. (LS)

VT AOP	Guillelines (Dates + Kim,	2009) fi	ish passage	Design flow	۱.
USGS	Stream Stats		/		<u>, </u>

VT Hydraulic / Low-Slope Design Data Form - 02/08

Page 2 / 4

Project Great Brook AOP - Colvert 3

Upstream

•	.0)	

Channel (18)

Verify	~l.
SURVE	yors
More +	held

	Average slope	3.8	%	1.7 %
da.	Average bankfull width	~ 30	ft	~ 30 ft
	Bed Elevation - low potential profile	~ 986		~988
	Bed Elevation - high potential profile	~ 989.5		~ 990
	Description of channel	riprop RB, bulllett, boulder rittle	cobble/	scour pool, colobe agg, before LB, bed right, right
	Channel roughness (n)	0.040		0.045
	Bed Elevation - project profile	989		989.2
	Elevation of downstream control	988.1		

Downstream

3 - DESIGN

How is profile controlled? <u>Tailwater riffle als scour pool consisting of Apposital</u> <u>cabble</u>. Bend vight along bedrock back adding control.

Culvert Description (LS)

Dimensions, Elevations

	Existing Culvert	Proposed Culvert	
Span	2,8 ft		
Rise	8.1 ft	ft	
Upstream Invert Elevation	988.91		
Downstream Invert Elevation	988.83	(Same)	
Culvert Length	36.65 ft	ft	
Slope	0.22 %	%	

Note: for bottomless structures, report elevations of tops of footings.

Description of proposed culvert; Chose one or more in each line

Shape:	Round - Arch - Box	(culvert (remain	likely to unchange
Material:	Corrugated metal - Smooth metal	- Concrete	
Corrugati	on dimensions:		

Style

Full pipe - Bottomless

VT Hydraulic / Low-Slope Design Data Form - 02/08

Page 3 / 4

Project Great Brook AOP-Colvert 3

Project ID <u>##1# 3846-0</u>3 Date <u>1410</u>

4 - DESIGN

			•		•			
Fis	h Passag	e Hydrau	lics					
	Flow (cfs)	Tailwater elev	Rough- ness (n)	Velocity (fps)	Depth (ft)	EDF (ft-lb/sec/cuft)	A&⊮/ J⊷ Passability (%)	
N Tal	1	987.9	0.015	1.9	0.04	0.26		In:
EN Nor Q2-20	35	988.5	6.4	6.3	0.4	0.86	90	ion
02 792	1	989.8	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	0.1	O.٩	6.01	100/29	:5
PR Nor Queso	35	990.4	• 8 /	2.2	1.6	O. 24	100121-	100
Desc	ribe roughness	(corrugation	dimensions, b	ed material or	roughened chann	nel description,	baffle	1
geon	neuy, etc)	have tell .		10.			$\langle 1 \rangle$	
	L	Jeposnica (E05 Q 4 00	ology to	ightned culve	rt better	(to romain)	-
Desc	ribe methods a	ind sources of	data for fish p	assage hydrai	ulic calculations.			
Fish Xing previous survey								
Hig	h flow hy	draulics	(LS)					
	Event	Flow (cfs)	Tailwater elevation	Rough- ness	Water surface elevation	Headwater (HW/culvert		

_	Event	Flow (cfs)	Tailwater elevation	ness (n)	elevation upstream	Headwater (HW/culvert rise)	
<u>م</u> (Q2	276	991.4	0.015	993.1	0.5	
PKS	Q25	682	992.3	/ **/	996.6	0.95	1
(Q100	964	992.9	1.00	998.6	1.2	
EX	Q 25	682	990.3	*	996.6	0.95	2

Describe methods and sources of data high flow hydraulic calculations. Stream Stats, Fish Xing, HDS #5 Namographs

Road and Alignment (LS) Height of fill on upstream face:	[culvert inv. 788.8 [culvert hop 997.0] ~ 3ft cover road & 1000.3] ~ 3ft cover ~ ~ ft. (~ culvert bottom to road &)
Culvert to channel <u>~ 10</u> degrees	(remain as existing) Road to culvert
Proposed alignment, transition changes _	none
Describe permanent benchmark and elevation $T_{OM}(p+(p)) = 993.01 \text{ or } S_{B}$	"STA-1" EL 1000 Assumed datur RB war when

VT Hydraulic / Low-Slope Design Data Form - 02/08

Page 4 / 4

APPENDIX K – Project Evaluation Results and Photographs

Date	ID	Flow (cfs)	Rainfall	Culvert	Weir
					turbulent flow at weir, some deep
					tongues with high velocity, depth ranges
			Rising limb, short,		between 0.7 and 1.5 feet between
			intense rainfall past	dwater~1 foot, v~2 fps, subcritical, no	boulders, velocity about 4 fps, 7 fps in
8/4/10	Lower	25	24 hours	outlet drop	main plunging flow
					tuned weir to eliminate drop at lower
					flows, dwater~0.7 feet in main chute,
					v~2.5 fps, small surface drop with
			Flow dropping rapidly	dwater~0.4 feet, v~1.4 fps, subcritical,	deeper flow in narrow channel,
8/5/2010	Lower	5.9	from past rains	no outlet drop	subcritical
					tuned weir again to eliminate drop at
					lower flows, dwater~0.7 feet in main
					chute, v~2.9 fps, deeper flow in narrow
					channel, turbulent, yet still appears
			Flow dropping rapidly	dwater~0.3 feet, v~1.0 fps, subcritical,	subcritical as raised local tailwater to
8/9/2010	Lower	3.1	from past rains	no outlet drop	create additional step
					tuned weir to eliminate drop at lower
					flows, dwater~0.6 feet in main chute,
					v~2.1 fps, flow in narrow channel,
			Flow dropping rapidly	dwater~0.3 feet, v~0.5 fps, subcritical,	turbulent, raised local tailwater to create
8/9/2010) Middle	3.0	from past rains	no outlet drop	additional step
					dwater~0.6 feet in main chute entrance,
			None in last few	dwater~0.2 feet, v~1.5 fps, subcritical,	v~2.9 fps, dwater~0.7 feet in main chute
8/13/2010	Lower	2.5	days, low flow	no outlet drop	drop area, v~4.4 fps
					tuned weir to eliminate drop at lower
					flows, dwater~0.6 feet in main chute,
				dwater~ 0.8 feet, v~ 1.1 fps at main chute	$v \sim 2.1$ tps, flow in narrow channel,
0/12/2010	C 1 11	2.1	None in last few	entrance; dwater~0.7 feet, v~4.4 fps at	turbulent, raised local tailwater to create
8/13/2010	Middle	2.1	days, low flow	main chute drop	additional step
					tuned weir to eliminate drop at lower
					nows, dwater ~ 0.6 reet in main chute,
			Nous in last form	dwater~0.6 feet, v~1.8 fps at main chute	$v \sim 2.1$ fps, flow in narrow channel,
0/12/2010	I.I	1.0	None in last rew	entrance; dwater~0.6 feet, V~3.8 fps at	turbulent, raised local tailwater to create
8/13/2010	Opper	1.8	Mana in last fam.		additional step
			davia moderate flow	dwater 0.8 fact v. 2.0 fra subaritical	division 1.2 fast in main shuts antronas
			appears to be good	dwater~0.8 reet, v~2.0 rps, subcritical,	$u_{\text{water}} \sim 1.2$ feet in main chute entrance,
11/12/2010	Lower	12.7	fish passage flow	transition in and out of structure	$\sqrt{2.2}$ Ips, dwater ~ 1.2 feet in main chute
11/12/2010	LOWEI	13./	non passage now	good denth and low velocity subcritical	denth and velocity challenging at weir
			None in last few	no outlet dron smooth sediment	vet passable sediment built up against
11/12/2010	Middle	n/m	days low flow	transition in and out of structure	structure
11/12/2010	, iviluate	19 111	auy5, 1011 11011	good depth and low velocity subcritical	Studiud
			None in last few	no outlet drop smooth sediment	depth and velocity challenging at weirs
11/12/2010	Upper	n/m	days, low flow	transition in and out of structure	vet passable

Photograph looking upstream over the rock weir with a fish passage channel and the backwatered Culvert #1 (Upper) taken on August 13, 2010 during low flow.

Photograph looking downstream over the rock weir with fish passage channels and the roughened channel at Culvert #2 (Middle) taken on August 13, 2010 during low flow.

Photograph looking upstream at the backwatered channel at Culvert #2 (Middle) taken on August 13, 2010 during low flow.

Photograph looking upstream over the rock weir with fish passage channel and backwatered Culvert #3 (Lower) taken on August 13, 2010 during low flow.

Photograph looking upstream over the rock weir with fish passage channels and the backwatered Culvert #1 (Upper) taken on November 12, 2010 during moderate flow.

Photograph at the rock weir with fish passage channels from the left bank at Culvert #2 (Middle) taken on November 12, 2010 during moderate flow.

Photograph looking upstream over the rock weir with fish passage channels and backwatered Culvert #3 (Lower) taken on November 12, 2010 during moderate flow.

